Poster DMT43

Patricia K. Coyle | patricia.coyle@stonybrookmedicine.edu

B-Cell Depletion and Efficacy Outcomes of Ofatumumab Are Consistent Across Different Body Mass Index Categories: Insights From ASCLEPIOS I and II Trials

Anne H. Cross,¹ Stephen L. Hauser,² Heinz Wiendl,³ Amit Bar-Or,⁴ Patricia K. Coyle,⁵ Xavier Montalban,⁶ Jérôme de Sèze,⁷ Haoyi Fu,⁸ Alit Bhatt,⁹ Ibolya Boer,¹⁰ Ludwig Kappos¹¹

¹Department of Neurology, Washington University School of Medicine, St Louis, MO, USA; ²UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco CA, USA; ³University of Münster, Münster, Germany; ⁴Center for Neuroinflammation and Experimental Therapeutics, and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; ⁵Department of Neurology, Stony Brook University, Stony Brook, NY, USA; ⁶Department of Neurology-Neuroimmunology, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Barcelona, Spain; ⁷University Hospital of Strasbourg, Strasbourg, France; ⁸Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; ⁹Novartis Healthcare Pvt. Ltd., Hyderabad, India; ¹⁰Novartis Pharma AG, Basel, Switzerland; ¹¹Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) and MS Center, Departments of Head Organs, Spine and Neuromedicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland

KEY FINDINGS & CONCLUSIONS

- Monthly 20-mg subcutaneous administration of ofatumumab (OMB) showed rapid B-cell depletion in people with relapsing multiple sclerosis, independent of body mass index (BMI)
- OMB achieves rapid and sustained B-cell depletion independent of BMI
- OMB demonstrated consistent treatment benefits on clinical outcomes (annualized relapse rate and 3-month/6-month confirmed disability worsening), as well as magnetic resonance imaging across all BMI subgroups and consistent with those observed in the overall pooled phase 3 ASCLEPIOS I and II patient population¹
- The subcutaneous administration of OMB allows for patients to have a home-based, high-efficacy therapy with demonstrated ease of use and without the need for dose adjustment based on BMI

Scan to obtain a copy of the post

https://bit.ly/CMSCDMT43

Copies of this poster obtained through Quick Response (QR) code are for personal use only and may not be reproduced without permission of the authors.

This study is sponsored by Novartis Pharma AG, Basel, Switzerland

Poster presented at the Consortium of Multiple Sclerosis Centers (CMSC) 38th Annual Meeting • May 29-June 1, 2024 • Nashville, TN, USA

Previously presented at ACTRIMS Forum • February 29-March 2, 2024 • West Palm Beach, FL, USA; and AAN Annual Meeting • April 13-18, 2024 • Denver, CO, USA

INTRODUCTION

- In the ASCLEPIOS I and II trials, ofatumumab (OMB) demonstrated superior efficacy over teriflunomide while maintaining a favorable safety profile in people with relapsing multiple sclerosis (MS)¹
- Previous analyses from the pooled ASCLEPIOS I/II trials evaluated the effect of OMB on B-cell depletion and efficacy outcomes in subgroups of patients defined by baseline demographic and disease characteristics, and revealed consistent treatment benefits and rapid B-cell depletion across diverse subgroups, suggesting that the approved dose of OMB achieves consistent efficacy across a wide patient spectrum^{2,3}
- As body mass index (BMI) can be a possible confounding factor affecting MS disease activity, it is important to understand the effect of BMI on B-cell depletion and efficacy outcomes across subgroups

OBJECTIVE

To evaluate the effect of OMB on B-cell depletion and efficacy outcomes in patients from the ASCLEPIOS I/II trials
defined by their baseline BMI

METHODS

• In the ASCLEPIOS I/II trials, patients were randomized to receive either OMB 20 mg subcutaneous or teriflunomide 14 mg oral for up to 30 months

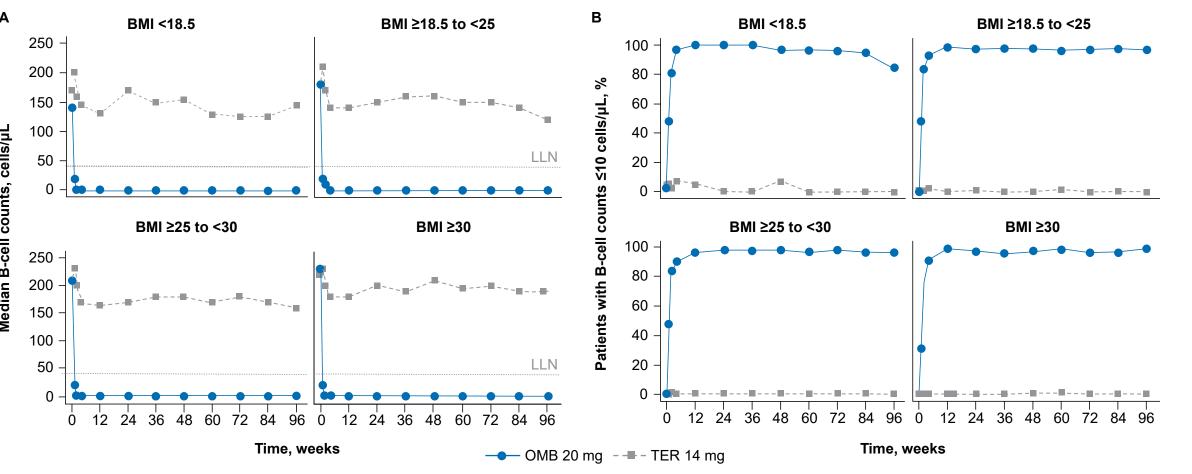
Outcomes		Assessments		Statistical Analyses
 B-cell levels (over 96 weeks) Median B-cell counts^a Proportion of patients with B-cell counts ≤10 cells/μL 	 Efficacy outcomes (up to end of study) Annualized relapse rate (ARR) 3-month/6-month confirmed disability worsening (3m/6m CDW) Gadolinium-enhancing (Gd+) T1 lesions New/enlarging (ne) T2 lesions 	 By typical BMI cutoffs, kg/m² Underweight: BMI <18.5 Normal weight: BMI ≥18.5 to <25 Overweight: BMI ≥25 to <30 Obesity: BMI ≥30 	By BMI baseline quartile (Q), kg/m ² • Q1: BMI <21.5 • Q2: BMI ≥21.5 to <24.6 • Q3: BMI ≥24.6 to <28.7 • Q4: BMI ≥28.7	 Descriptive statistics for categorical data (B-cell counts) Negative binomial regression model (ARR, Gd+ T1, and neT2 lesions) Cox regression model (3mCDW and 6mCDW)

^aB-cell counts were measured categorically in the categories of 0-4, 5-14, 15-24, and up to 250 cells/µL

RESULTS

Baseline Demographics and Disease Characteristics

- Baseline demographics and disease characteristics of patient subgroups categorized by typical BMI cutoffs included a mean Expanded Disability Status Scale score of ~2.9, ~70% of female patients, and a mean age of approximately 39 years
- Similar baseline demographics and disease characteristics were observed for patients across BMI quartiles


Effect of OMB on B-Cell Counts Over 96 Weeks

- Across all BMI categories by typical BMI cutoffs, the median B-cell counts reduced rapidly with OMB by Week 2 (≤10 cells/μL) and sustained at 0 cells/μL up to Week 96 (Figure 1A)
- When analyzed by BMI quartiles, the results were consistent with those of BMI cutoffs (median B-cell counts were ≤10 cells/μL at Week 2 and 0 cells/μL until
 Week 96)
- In the subgroups receiving teriflunomide, B-cell counts ranged between 120 and 230 cells/μL (by BMI cutoffs) and 115 and 230 cells/μL (by BMI quartiles) throughout
 the observation period

Proportion of Patients With B-Cell Counts ≤10 Cells/μL

- Irrespective of typical BMI cutoff, >75% of OMB-treated patients achieved B-cell counts ≤10 cells/μL by Week 2 and ≥90% by Week 4, which was maintained up to Week 96 (**Figure 1B**)
- When analyzed by BMI quartiles, the results were consistent with those of BMI cutoffs (proportion of patients with B-cell counts ≤10 cells/µL were >75% at Week 2 and >93% at Week 96)
- In the subgroups receiving teriflunomide, B-cell counts ≤10 cells/µL were found in 0% to 7.1% (by BMI cutoffs) and 0% to 4.1% (by BMI quartiles) of patients at any given time point

Figure 1. (A) Median B-Cell Counts Over 96 Weeks by Typical BMI Cutoffs; (B) Proportion of Patients With B-Cell Counts ≤10 Cells/µL Over 96 Weeks by Typical BMI Cutoffs

Effect of OMB on ARR Across Subgroups

- OMB demonstrated higher efficacy vs teriflunomide for ARR across BMI categories by typical cutoffs (Figure 2)
- Similar results were observed across different BMI quartiles
- The magnitude of OMB treatment effect was consistent among all subgroups

Figure 2. ARR by Typical BMI Cutoffs

rigare 2. Articly Typicar Bini Gutons								
	N/Adj rate OMB 20 mg	(95% CI) TER 14 mg	Favors OMB 20 mg	Favors TER 14 mg	Interact. p-value ^a 0.953			
BMI <18.5	34/0.10 (0.04-0.25)	42/0.22 (0.12-0.40)	 ◆		0.000			
BMI ≥18.5 to <25	487/0.13 (0.11-0.17)	434/0.27 (0.23-0.32)	-	-				
BMI ≥25 to <30	235/0.11 (0.08-0.16)	276/0.26 (0.21-0.33)	•	-				
BMI ≥30	190/0.10 (0.07-0.15)	182/0.22 (0.16-0.29)	-	_				
			0.1	1	10			
			Rate ratio (95% CI)					

Adj, adjusted; ARR, annualized relapse rate; BMI, body mass index; Interact., interaction; OMB, ofatumumab; TER, teriflunomide, N, total number of patients included in the analysis

ap-Value for the type-3 test of the treatment by subgroup interaction is a heterogeneity test (the treatment effect is similar between subgroups if the test is nonsignificant). Results obtained from the statistical model were adjusted with additional cofactors of subgroup and treatment by subgroup interaction for subgroup analysis. Natural log of the time-in-study was

Effect of OMB on 3m/6mCDW Across Subgroups

- Reductions in 3m/6mCDW favored OMB vs teriflunomide across all BMI subgroups
 (Figure 3)
- Similar results were observed across different BMI quartiles

Figure 3. 3m/6mCDW by Typical BMI Cutoffs

J	, ,,			
3mCDW	Event r OMB 20 mg	ate, n/N (%) TER 14 mg	Favors OMB 20 mg	Favors Intera TER 14 mg p-val
BMI <18.5	2/34 (5.9)	4/42 (9.5)		
BMI ≥18.5 to <25	41/487 (8.4)	56/434 (12.9)	-	
BMI ≥25 to <30	21/235 (8.9)	41/276 (14.9)	-•	
BMI ≥30	24/190 (12.6)	24/182 (13.2)	-	
6mCDW				0.51
BMI <18.5	2/34 (5.9)	4/42 (9.5)		
BMI ≥18.5 to <25	34/487 (7.0)	40/434 (9.2)	-	_
BMI ≥25 to <30	16/235 (6.8)	36/276 (13.0)		
BMI ≥30	19/190 (10.0)	19/182 (10.4)	-	
			0.1 Hazard rat	1 10 io (95% CI)

3m/6mCDW, 3-month/6-month confirmed disability worsening; BMI, body mass index; Interact., interaction; n, total number of events included in the analysis; N, total number of patients included in the analysis; OMB, ofatumumab; TER, teriflunomide ap-Value for the type-3 test of the treatment by subgroup interaction is a heterogeneity test (the treatment effect is similar between subgroups if the test is nonsignificant). Results obtained from the statistical model were adjusted with additional cofactors of subgroup and treatment by subgroup interaction for subgroup analysis

Effect of OMB on Magnetic Resonance Imaging Lesions Across Subgroups

- OMB demonstrated higher efficacy vs teriflunomide for Gd+ T1 and neT2 lesions across BMI categories by typical cutoffs (Figure 4)
- The magnitude of OMB treatment effect was consistent among all BMI subgroups
- Similar results were observed across different BMI quartiles

Figure 4. MRI Lesions by Typical BMI Cutoffs

	, ,,								
		umber of Gd+ lesions can (95% CI) TER 14 mg	Rate ratio (95% CI)	Rate reduction %/p-value 0.242 ^a		zed mean rate of ions (95% CI) TER 14 mg	Rate ratio (95% CI)	Rate reduction %/p-value 0.078 ^a	
BMI <18.5	0.02 (0.002-0.137)	1.27 (0.558-2.887)	0.01 (0.001-0.126)	98.7/<0.001*	1.34 (0.750-2.394)	7.54 (4.569-12.453)	0.18 (0.083-0.382)	82.2/<0.001*	
BMI ≥18.5 to <25	0.03 (0.018-0.044)	0.64 (0.494-0.824)	0.04 (0.026-0.074)	95.6/<0.001*	0.85 (0.723-1.004)	5.54 (4.748-6.459)	0.15 (0.123-0.193)	84.6/<0.001*	
BMI ≥25 to <30	0.01 (0.006-0.034)	0.62 (0.448-0.861)	0.02 (0.009-0.058)	97.7/<0.001*	1.07 (0.848-1.341)	4.50 (3.699-5.466)	0.24 (0.175-0.321)	76.3/<0.001*	
ВМІ ≥30	0.05 (0.027-0.087)	0.79 (0.528-1.173)	0.06 (0.030-0.125)	93.9/<0.001*	0.62 (0.471-0.817)	4.54 (3.559-5.792)	0.14 (0.095-0.197)	86.3/<0.001*	
			0.001 0.01 0.1	1		0.001	0.01 0.1 1		

Adj, adjusted; BMI, body mass index; Gd+, gadolinium-enhancing; MRI, magnetic resonance imaging; neT2, new or enlarging T2 lesions; OMB, ofatumumab; TER, teriflunomide

ap-Value for the type-3 test of the treatment by subgroup interaction is a heterogeneity test (the treatment effect is similar between subgroups if the test is nonsignificant). Results obtained from the statistical model were adjusted with additional cofactors of subgroup and treatment by subgroup interaction for subgroup analysis. For Gd+ T1 lesions, the natural log of the number of MRI scans with evaluable Gd+ lesion counts is used as the offset to obtain the lesion rate per scan. For neT2 lesions, the natural log of the time from the baseline scan (in years) is used as the offset. *Indicates statistical significance (2 sided) at the 0.05 level

References

Hauser SL et al. N Engl J Med. 2020;383(6):546-557.
 Wiendl H et al. E-presentation at: EAN 2020; EPR3101.
 Hauser SL et al. Poster presented at: AAN 2020; P7.1-013.

Acknowledgements

Medical writing support was provided by Amitha Thakur and Saimithra Thammera and design support by Ravi Kishor, all of Novartis Healthcare Pvt. Ltd., Hyderabad, India. Editorial assistance for this poster was provided by Envision Pharma Group and was funded by Novartis Pharmaceuticals Corporation The final responsibility for content lies with the authors

BMI, body mass index; LLN, lower limit of normal; OMB, ofatumumab; TER, teriflunomide

Disclosures

Patricia K. Coyle has received consulting and nonbranded speaker fees from Accordant, Biogen, Bristol Myers Squibb, Eli Lilly and Company, EMD Serono, Genentech/Roche, the National Institute of Neurological Disorders and Stroke, and Sanofi-Genzyme. Anne H. Cross has received personal compensation from Biogen, Bristol Myers Squibb, EMD Serono, Genentech/Roche, Horizon, Novartis, Stephen L. Hauser serves on the scientific Advisory boards of Accure, Anne H. Cross has received travel reimbursement and writing support from F. Hoffmann-La Roche Ltd and Novartis AG for anti-CD20-therapy-related meetings and presentations; grants: NIH/NINIDS (R35NS111644), NMSS (Si-2001-35701), and Valhalla Foundation. Heinz Wiendl has been a member of the Scientific Advisory Boards of Alexion, argenx, BioCryst, Bristol Myers Squibb, Cellerys, Galapagos, Janssen, Merck, Novartis, Sandoz-Hexal, and Uniqure; has received speaker honoraria and travel support from Alexion, Biogen, Bristol Myers Squibb, Eli Lilly and Long, Roche, Teva, and WebMD Global; is a paid consultant for AbbVie, Actelion, argenx, BD, Biogen, Bristol Myers Squibb, Dianthus, EMD Serono, EPG Health, Fondazione Cariplo, Gossamer Bio, Idorsia, Immunic, Immunovant, Immune Bio, Janssen, LTS, Merck, NexGen, Novartis, Roche, Samsung, Sangamo, Sanofi, the Swiss Multiple Sclerosis Society, Syneos Health, Tolerand-Lat, Genzyme, Merck, Novartis, Roche, and UGB. Amit Bar-Or has participated as a speaker in meetings sponsored by and has received consulting fees and/or grant support from Atara, Biogen, Celgene/Receptos, Judicial trials for AbbVie, Actelion, Alexion, Biogen, Bristol Myers Squibb/Celgene, EMD Serono, EXCEMED, F. Hoffmann-La Roche Ltd, Genzyme, Merck, Novartis, Sandor, Sandor-Genzyme, Teva, and TG Therapeutics. Jérôme de Seze has received ppersonal compensation from Alexion, Biogen, Bristol Myers Squibb, Celltrino, Clene Nanovartis, Roche, Sanofi, Santhera, Shionogi BV, Wellmera AG, and Zai Lab; speaker fees from Bristol Myers Squibb, Lealthour. On Health Control of th